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Introduction

Brain–machine interfaces (BMIs) are built 
as communication devices that encode 
brain activity to a machine command 
signal, not involving muscles. The 

users having diseases or traumatic injuries 
which cause muscle control degradation or 
motor disabilities (termed as a locked-in 
syndrome). The locked-in syndromes may 
comprise a wide spectrum of diseases and 
traumata, i.e., amyotrophic lateral sclerosis, 
cerebral palsy, muscular dystrophy, multiple 
sclerosis, brainstem stroke, and brain or 
spinal cord injury.

Practical applications of brain–computer 
interfaces (BCIs) cover electrophysiological 
signals, such as electroencephalography 

BCIs generally control a robotic end 
system via these aforementioned signals 
recorded from the synchronized activity 
of neuron groups inside the brain of 
subjects. The subjects can be people 
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disabled users. This study proposes a noninvasive BMI design methodology to control a robot 

Methods: The BMI uses the partial directed coherence measure and a time-varying multivariate 
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An extreme learning machine is used to generate a model with the extracted features, which is 
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characteristics. The aim here is to establish 
a user-independent, generic model of the 
BMI and to search for robust-adaptive 
algorithms that minimize the variance of 

kinds of users. The combination of “feature 
extraction/dimension reduction/feature 

least possible error variance concerning 
users becomes the main model. As a result 
of this main model obtained, i.e., the robot 
trajectory control can be realized. The 
strong hypothesis (model) that is generated, 
is expected to guarantee the mental task 

their errors to a lower band. As a result 
of this research, the BMI can be brought 
to a level that competes with commercial 
applications. The design procedure is 
divided into three basic modules: data 

control. The majority of brain waves along 
the scalp are collected, and the wave 
information is transferred to a central 
processing unit (CPU) for processing in 
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and runs algorithms that extract features to control 

increasing the robustness of a BMI. As compared to the 

information can be above 40 Hz, which is not capable in 
[1,2]

BMI architecture to be designed: (1) should adapt to 
nonstationary brain dynamics, (2) should generate neural 
signals from general brain states independently of the 
users, (3) should have a generalizable structure that will 
allow an easy transition to control applications, and (4) 

[3-6]

signal is nonstationary, that is, the data are subject to 
covariate shift. The nonstationarity can occur from the 
transition of the training model without feedback to online 

in mental status over time. These nonstationary cases are 

mismatch.[7,8]

extraction methods that originated from time-domain, 

are utilized in the literature.[9-12] Time-domain features 
are extracted directly from the signal and focus on 

spectrum changes with respect to time. The short-time 
Fourier transform and the wavelet transform are the most 
applicable.[13-16]

sensors to look at the activity localized in a particular 
brain region, is also applied. Some of the common spatial 

bipolar montage, where 
bipolar channels are evaluated by subtracting the signals 
from two collocated electrodes;[17] common average 
reference, which subtracts the average value of the full 

[18] 
Laplacian method, which evaluates for each electrode 
location the second derivative of the instantaneous spatial 
voltage distribution by combining the value at that location 
with the values of a set of surrounding electrodes;[19] and 
common spatial patterns, which analyzes multichannel 

utilized to optimize the variance for one task and minimize 
it for the other tasks.[20]

utilized in electrophysiological feature extraction, such as 
[21-23] The 

has also been applied to analyze the electrophysiological 

signals. The parametric model has an adaptive closed-loop 
controller with a recursive Bayesian estimator and a 

back to the optimal controller. The performance of BMIs is 
enhanced by closed-loop solver adaptation or multiplicative 

with KF. Thanks to this solver, the learned training 
datasets become more robust and provide a wide variety of 
neural-kinematic mapping learning.[24-26]

low. Among the main reasons for this are the use of 
slow gradient-based learning algorithms in the training of 
ANNs and the iterative updating of all parameters of the 
networks in this way at each stage. ELMs have succeeded 
in solving this problem by proving that hidden nodes do 
not necessitate learning and are recursively set. ELM 
consists of generalized single or several hidden layer 
feedforward networks. ELMs give importance to feature 
representations in hidden layers compared to support 
vector machines (SVMs). These models can demonstrate 
good generalization performance and learn extremely 
faster than backpropagation networks. Random input layer 
weights add to the generalization capabilities of a linear 
output layer solution as it has nearly orthogonal (weakly 
correlated) hidden layer properties. If the weight range is 
constrained, the orthogonal inputs yield a larger solution 
space volume with these constrained weights. Thanks 
to the small-weight norms, the system is more stable 
and robust to noise. The random hidden layer generates 
weakly correlated hidden layer features, proposing a 
solution with a low norm and strong generalization 
performance. Various types of ELM have been proposed 
in the literature.[27-29]

samples are added to the dataset and grown, the ELM 

because the proportion of new incoming data is small. 
Therefore, Matias et al.[30]

ELM (OS-ELM). The basic idea behind OS-ELM 
is to avoid retraining on previous examples using 

et al.[31] developed an incremental ELM (I-ELM). When 
a new hidden node is introduced, I-ELM randomly 
adds nodes to the hidden layer one by one, freezing the 
output weights of the existing hidden nodes. I-ELM is 

with piecewise continuous activation functions. Rong 
et al.[32] proposed a pruned ELM (P-ELM) algorithm as 
a systematic and automated strategy for building ELM 
networks. Using a small number of hidden nodes can 
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Compared to traditional ELM, simulation results showed 

produce fast responses and strong prediction accuracy 
on unseen data. Feng et al.[33] proposed an error 
minimization-based method (EM-ELM) that determines 
the number of hidden nodes in generalized SLFNs by 
growing hidden nodes one by one or group by group. 
As the networks grow, the output weights are gradually 

burden. The simulation results in sigmoid-type hidden 
nodes showed that this method can greatly decrease the 
computational cost of ELM. Nodes are randomly added 
to the network until they reach a certain error value 

ELM (E-ELM) has been developed to optimize input 
weights and latent biases and determine output weights. 
Output weights are determined analytically using the MP 
generalized inverse.[34] The stability and generalization 
performance of the ELM was investigated. This system 

algorithm is applied to select hidden nodes from randomly 
generated candidates at each step and then hidden nodes 
are added until the stopping criterion is matched. In the 
second stage, unimportant nodes are removed.[35,36] A 
kernel-based ELM (KELM) inspired by SVM has been 
developed and the main kernel function used in ELMs 
is the radial basis function. KELMs are used to design 
deep ELMs (DELMs).[37] DELMs utilize KELM as an 
output layer.[38] Voting-based ELM (V-ELM) has been 

In V-ELM, not just one network is trained, but also many 

majority voting method.[39]

In this study, a signal processing methodology was 
developed for the subjects who control the movement of 
a robotic arm using four motor imagery signals related to 
the following wrist movement states, respectively: right, 
forward, left, and backward. Section 2 gives a background 

implemented in this study. In Section 3, the analysis results 
were presented. Section 4 includes the discussion and 
conclusive summary part.

Materials and Methods

There is no need for ethics committee approval.

MEG data acquisition and preprocessing

The data set was provided by the Brain Machine 
Interfacing Initiative, Albert-Ludwigs-University 
Freiburg, the Bernstein Center for Computational 
Neuroscience Freiburg, and the Institute of Medical 
Psychology and Behavioral Neurobiology, the University 
of Tübingen collected for the BCI Competition 

IV (https://www.bbci.de/competition/iv/). The data set 

subjects. They performed wrist movements in four various 

was to move a joystick from a center position toward one 
of four targets located radially at 90° intervals (four-class 
center-out paradigm) utilizing exclusively the right hand 
and wrist.

rate. The data were band-pass filtered (0.5 to 100 Hz., 
Butterworth, 3rd order) and resampled at 400 Hz. 

which were positioned above the motor areas given in 
Figure 1.

processes can be accessed at https://www.bbci.de/
competition/iv/. Data were collected from two separate 
subjects including training sessions during 40 s/trials for 
each mental task, and testing sessions during 73 trials 
by executing random tasks. The test data will be used as 
external validation for assessing the performance of the 

The training data were merged as the size of the matrix 
for each mental task-based class is 40 (number of 
trials)×800 (number of sampling data)×10 (number of 
channels). The train data matrix was reshaped into a 
two-dimensional form as 32000 (number obtained from 
multiplication of trials with the sampling data)×(number 
of channels). The total size of the training data is 
128000 × 10.

tasks were merged as the size of the matrix is 73 (number 
of trials)×800 (number of sampling data)×10 (number 
of channels). The test data matrix was reshaped into a 
two-dimensional form as 58400 (number obtained from 
multiplication of trials with the sampling data)×10 (number 
of channels).

Feature extraction

The feature extraction process includes the 
transformation of the preprocessed signal into a 
feature matrix by attenuating noise and focusing on 
important data. The AR

FIT
 package is utilized to find an 

optimum model order for the time-varying multivariate 
autoregressive (MVAR) model. The time-invariant 
parameter and the order of the model can be estimated 
using AR

FIT
-package. “Schwarz’s Bayesian Criterion” 

is applied for the order estimation and then the model 
order is fixed for further analysis. Time-varying partial 
directed coherences (PDCs) are evaluated through 
the time-varying MVAR model matched with the 
signal using an AAR algorithm, which uses linear 
Kalman filtering for parameter estimation. A surrogate 
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data method having 50 realizations is performed to 

at a 99% confidence level. Surrogates are constructed 
by randomizing all samples of the signal to remove 
the causal relations among them.[40,41] The algorithm 
embeds the linear Kalman filtering to update the MVAR 
parameters for each time sample.

A d-dimensional time-varying MVAR process is given in 

( )
p

r
k k k -r k

r=1

y = A y + w  (1)

where p is the model order, d
kw R  is a zero-mean 

white process noise vector, and ( )r d×d
kA R is the matrix 

of autoregressive r and time point 

k=p+1,…,N.

state vector of the dynamical system and focusing the 
nonstationary signal as the measurement is given in 

[42,43]

k k -1 k -1 k k

k k k k

x = F x + K e

y = H x +v
 (2)

where x
k
 is the parameter vector (state vector), k

k 
is the 

Kalman gain, H
k 

is the measurement matrix (observation 
matrix), ek is the one-step prediction error, and yk is the 
estimated vector.
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where yT(k-1)=[yT(k-1)…yT(k-p))]. The elements of the state 
approach. 

The process and observation noise covariance matrices 
(w(k),v(k

[44]

1v k = - × v k - 1 + ×e k

I × ×tr z k
w k = p

 (4)

z(k) is the a-posteriori 
correlation matrix. I is the identity matrix, and × implies 
the matrix product operator.
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the smoothing of the AR estimates. The (r)
kA  matrices given 

11 1

1

N

r
k

N NN

a (r,k) . . . a (r,k)

. . . . .

A = . . . . .

. . . . .

a (r,k) . . . a (r,k)

 (5)

for r = 1,...,p and their elements are predicted utilizing 
the adaptive 
information, adaptive time-varying connectivity measures 

parameters “ (r)
kA

i2 f

p
r -r

k
r=1 z=e

A k, f = I - A z  (6)

PDC, which is a time-varying connectivity measure, is 
[45,46]

2

ij

ij p
2

im
m=1

A k, f
k, f

A k, f

 (7)

and stability of the estimates while the denominator part 
permits the normalization of outgoing connections by the 

[47]

four neurons for the four classes that represent the four 
wrist movement states. The number of neurons in the 
input layer changes according to the length of the feature 
vector. NNs and SVMs play key roles in machine learning 
and data analysis. However, it is known that there exist 
some challenging issues with them such as intensive 
human intervention, slow learning speed, and poor learning 

ELMs are a kind of feedforward neural network, which does 
not necessitate gradient-based backpropagation for learning. 
It utilizes MP generalized inverse to set its weights. ELM 
not only learns up to tens of thousands faster than NNs 

regression, binary, and multi-class applications. ELM is 

A single-hidden layer feedforward NN is shown in 
Figure 2.

The algorithm of a single-hidden layer feedforward NN can 
be listed as multiplication inputs by weights, adding bias, 

three steps with a number of layers times, evaluating output, 
backpropagating, and repeating every step, respectively. 

the repeating steps and replacing the backpropagation step 
with a matrix inverse operation.

( ) ( )
L L

L i i i i j i
i=1 i=1

f x = g x = g w * x +b , j = 1,...,N  (8)

where L is the number of hidden units, N is the number of 
training samples, 

i
 is the weight vector between ith hidden 

layer and output, w is the weight vector between the input 
and hidden layer, g(.) is an activation function, b is a bias 
vector, and x is an input vector.

is a special matrix due to the pseudo-inverse operation. 

T = 

1 1 1 L 1 L

1 N 1 L N L N×L

g w * x +b . . . g w * x +b

. . . . .

H = . . . . .

. . . . .

g w * x +b . . . g w * x +b

TT
11

TT
NL L×m N×m

t

..

= ,T = ..

..

t

 (9)

where m is the number of outputs, H is called the hidden 
layer output matrix, and T is a training data target matrix.

Since there are no certain rules for choosing the number of 
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Machine interface design

JACO robotic arm, which is a generic 6-axis robotic 

physical realization and machine interface of the proposed 
algorithm. The arm has six degrees of freedom in total with 
a maximum reach of 90 cm radius sphere and a maximum 
speed of 30 cm/s. It is made of three sensors: force, 
position, and acceleration. This arm should be suitable 
for a person with a disability of the upper arm and can be 
placed in a wheelchair. The upper arm of the robot is made 
of three links which are similar to the upper limb of the 
human body, as shown in Figure 3.

An API, which gives freedom of control to users, is provided 
by the manufacturers. The subject needs to control the 
movement of the robot arm toward a given target by using 
four mental commands: Forward (F), Backward (B), Left (L), 
Right (R), and No Movement command. To end the movement 
of the robot arm, the subject would generate a “No Movement” 
command by taking no action. The arm could move on 
two axes (x and y) and in four directions (forward (+y), 

are generated according to the mental commands. To move 
the arm forward, the subject imagines the forward wrist 
movement, and performs backward wrist movement to move 
the arm backward. The subject imagines moving his/her right 
wrist to move the robotic arm right and imagines moving his/

kinematics gives the relation between joint velocities and tip 
velocity. This relation is in matrix form called Jacobian. To 

ˆ
b a

b

abb a

I 0w w h
V = = +  

-l I 0V V

b ba aV = V + H  (10)

can be constructed by using these joint relations. This 

matrix is called  and gives all joint velocity vectors. To 

t tV =  H    (11)

calculated concerning joint velocities. Hence, the Jacobian 

tJ =   H  (12)

MATLAB Simulink Code is created by using the above 

according to Rodrigues’ formula, the rotation matrices for 
each joint are built. The coordinate frames for each joint 
change when the robot moves. For this reason, coordinate 
frames are updated at each sample time by using joint 
velocities, sample period, and rotation axes. However, this 
update mechanism is correct if the joint velocity is constant 
along the sample period. The selected sample time is 1 
ms. The Simulink block diagram of the robot Jacobian is 
shown in Figure 4.

Inputs are base positions (6 × 1) and Robot Joint Angular 
Positions (6 × 1), and Outputs are Tip Point Position and 
Load Center Position. Tip and load center positions are fed 

of the moving base kinematic code. Only the angular part 
of the base position is used. These angles are Euler XYZ 
angles and converted to vector-angle representation and 

dynamical model of a robot are Newton–Euler-based and 
Euler–Lagrange-based dynamical modeling. The Newton–
Euler method, which is a vectorial approach, was explained 
in this article for dynamical modeling.

relationship between joint forces and joint accelerations. 

and linear and angular inertia of the joint.

.

k k+1 k,k+1 k+1 k,c k k k k

d
= + l  × f + l  ×  v  m +  (I w ) 

dt

k k+1 k k k k,c

d
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dt
 (13)
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15 is obtained.

( ( ) )T T
t kF M V b F  (15)
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joints. To reach forces that make the robot joint accelerate, 
the force vector F_ is multiplicated with the rotation axis 

¨

 T T
t= H F = +C + J F  (16)

Based on MATLAB kinematic code for moving 

expressions are related to Jacobian terms. Because of that 
dynamic model code can be easily improved by starting 

is creating  the matrix according to base velocities, base 

base dual robot “
tensors, position vector of the center of mass, and joint 
angular velocity vectors. Masses, inertia tensors, and 
center of gravities concerning joint frames are found 
by investigating the SolidWorks drawing of the robot 
arm. Joint angular velocity vectors are provided from 
the previous iteration with zero initial points. After 

” the moving base features 
are added to the “ ” and a new “ ” is created. These 
additions are base mass matrix which depends on base 
mass, inertia tensor, the center of gravity, and base-robot 

vector, b vector, and mass matrix. After calculating 
these matrices, the forward dynamics of the robot with a 

Figure 5
..

( )-1 T
t=  - C - J F  (17)

The inputs are Tip Forces (12 × 1), Base Forces (6 × 1), 

Vectors (12 × 1), respectively. The outputs are 
Accelerations (18 × 1), Tip Point Velocities (12 × 1), and 
Load Velocity (6 × 1), respectively.

Results

After applying the adaptive AR-based PDC feature 
extraction method to the train data matrix for each 
class, the time-variant estimated MVAR parameters 
were obtained. The size of the parameter vector for each 
class is 32000 × 200.The rows represent time in terms 
of data samples, and the columns show the parameter 

values of the adaptive PDC measures at a 99% level of 

are given in Figure 6 for each class of wrist movement 
states.

The adaptive PDC results show the connectivity between 
channels. It can be inferred from Figure 6 that the most 

3 to channels 1, 2, 4, and 5, respectively. The model 
parameters are accurately tracked and each class has 

The adaptive AR-based PDC feature matrices are 
concatenated and the feature train matrix is built, and the 
obtained train matrix is fed into the ELM. The size of the 
feature train matrix is 128000 × 200.

A principle component analysis-based dimension reduction 
algorithm, which is an orthogonal transformation 
constructing the relevant features, is applied to the feature 
train matrix because the number of extracted features is too 

in the feature data are selected. After the dimensionality 
reduction process, the size of the feature train matrix 
becomes 128000 × 4.

The obtained data are randomly divided into 
training, testing, and validation sets. Every time 
the system is executed, samples were used for each 
task (70400 samples [55%] are used for training, 
25,600 samples are used for validation [20%], and the 
remaining 32000 trials were used for the test [25%]). ELM 
has trained for 100 epochs (iterations) by incrementing the 
number of neurons in the hidden layer (hidden node). For 

Figure 7 
represents the performance curve sensitivity concerning the 
hidden node.

increasing the hidden nodes. Therefore, the number 
of hidden neurons is chosen as 100. The training ratio 
is selected using a trial and error process as 0.7. The 
activation function of the output layer is chosen as 
“sigmoid.”

The confusion matrices are given in Figure 8.

Test data are used for the external validation process. The 
size of the reduced feature test matrix is 58400 × 4. After 
feeding the test data to the trained ELM model, the external 
validation accuracy of the ELM is found as 84.88%. 
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A comparative analysis was conducted over the external 

given in Table 1.

According to the external validation results, the ELM 
outperforms the other machine learning models, and also 
the computational speed is extremely fast.

Discussion and Conclusive Summary

The obtained results clarify that by applying the 
proposed methodology, control signals from an 

Time-varying cortical neural connectivity features are 

F
s

dc

ba
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which originated from wrist movements. According 
to the external validation classification results, 
ELM outperforms the other classifiers by achieving 
the highest accuracy. The accuracy of which these 

extensively measured using the wide industry-employed 
receiver operator characteristic curves. After the 
signal processing part is taken care of, it is necessary 
to establish the dynamic model of the robot, create 
and simulate the solid model, eliminate the errors 
caused by the system dynamics in the robot joints, and 

systems are capable to be robustly utilized as a control 
device through the proposed framework.
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